
An Enterprise Perspective on Technical Debt
Tim Klinger, Peri Tarr, Patrick Wagstrom, Clay Williams

IBM Thomas J. Watson Research Center
19 Skyline Drive

Hawthorne, NY 10532 USA

{tklinger, tarr, pwagstro, clayw}@us.ibm.com

ABSTRACT
Technical debt is a term that has been used to describe the
increased cost of changing or maintaining a system due to
expedient shortcuts taken during its development. Much of the
research on technical debt has focused on decisions made by
project architects and individual developers who choose to trade
off short-term gain for a longer-term cost. However, in the context
of enterprise software development, such a model may be too
narrow. We explore the premise that technical debt within the
enterprise should be viewed as a tool similar to financial leverage,
allowing the organization to incur debt to pursue options that it
couldn’t otherwise afford. We test this premise by interviewing a
set of experienced architects to understand how decisions to
acquire technical debt are made within an enterprise, and to what
extent the acquisition of technical debt provides leverage. We find
that in many cases, the decision to acquire technical debt is not
made by technical architects, but rather by non-technical
stakeholders who cause the project to acquire new technical debt
or discover existing technical debt that wasn’t previously visible.
We conclude with some preliminary observations and
recommendations for organizations to better manage technical
debt in the presence of some enterprise-scale circumstances.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—life cycle,
productivity

General Terms
Human Factors , Management

Keywords
Extended Stakeholders, Leverage, Technical Debt

1. INTRODUCTION
Technical debt has been framed previously [2][3] as a tradeoff
between implementing some piece of software in a robust and
mature way (the “right” way) and taking a shortcut which may
provide short term benefits, but which has long term effects that
may impede evolution and maintainability. Such a proposition
frames technical debt in a primarily negative light by assuming
that there is some fixed “right” way to proceed, as well as by
emphasizing the cost of making the expedient choice over the

benefit that may accrue because of that choice.

But is the problem or the tradeoff really either this straightforward
or this localized, particularly in enterprises that deliver software
products for a living? From our vantage point as researchers in a
large, software-producing enterprise, we have seen a variety of
things that make us suspect that the sources of technical debt, the
motivation for incurring it, and the management of it, are
considerably more complex than simple tradeoffs made by
technical architects. While technical architects bear responsibility
for the technical features of the code, numerous additional
stakeholders are active in ensuring the product is a success. These
individuals cover diverse technical and non-technical roles such as
product testing, brand strategy, legal, marketing, and more [5].
Furthermore, in an enterprise context, decisions about products or
projects are rarely made in a vacuum. Instead, the portfolio of
development activities is managed as a collection, meaning that
decisions for one product to take on debt may be made in order to
realize an important opportunity for the portfolio as a whole.
When considering the larger set of project stakeholders and the
perspective of the portfolio of software investments, acquiring
technical debt may offer strategic benefits to an enterprise. In this
case, the debt is analogous to using leverage for long-term
investment. For example, the ability to meet a critical customer
delivery date may necessitate technical shortcuts, but meeting the
delivery date may ensure that the product thrives and grows in the
marketplace, something that may be in jeopardy if the delivery
date is missed. After delivery of the product, the enterprise may
have to repay some of the technical debt, or, similar to a financial
option, they may not be required to repay the debt if the product
or enterprise evolves in a different direction.

To begin exploring this perspective, we conducted a limited
ethnographic study involving four technical architects at IBM.
Although the sample size was small and the architects had
different backgrounds and responsibilities, we heard remarkably
similar perspectives from them, and we believe the results provide
some interesting and useful preliminary insights into how
enterprise organizations view, evaluate, and leverage technical
debt. We present our interviews and general findings Section 2,
then describe recommendations for enterprises and software
engineering researchers alike in Section 3.

2. INTERVIEWS
To understand the problem of technical debt, we conducted a
series of interviews with technical architects inside IBM. The
interviews were designed to elicit general responses about
technical debt, and also to have the project architects hone in on a
smaller number of specific instances when their projects had
incurred technical debt. For these specific instances, we drilled
deeper to address the nature of the debt incurred, the reason for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’11, Workshop on Managing Technical Debt, May 23, 2011,
Waikiki, Honolulu, Hawaii.
Copyright 2011 ACM 1-58113-000-0/00/0010…$10.00.

incurring the debt, the individuals responsible for incurring the
debt, and the ramifications of the debt.

2.1 Interview Subjects and Protocol
Although we have a small number of subjects in this preliminary
work, we have attempted to draw a sample from a wide range of
projects within the company. The four interview subjects were as
follows:

Subject A: An architect for a relatively new product that fits into
an existing product line at IBM. This product was required to
integrate with existing and evolving technologies.

Subject B: An experienced architect with exposure to many
different product lines. This architect was charged with creating
and managing a team to shepherd a recently acquired, but mature
software product toward integration with existing tools. Subject B
was an IBM employee when the product was acquired.

Subject C: An architect for an established product acquired by
IBM (different from the product managed by Subject B). The
architect worked with the product before it was acquired and
successfully led an effort to integrate the acquired product with
existing IBM products.

Subject D: A very experienced architect who has worked on a
variety of extremely large-scale systems both inside and outside
of IBM.

Interviews were conducted by phone by members of our team
with one researcher designated as the lead interviewer, and 2-3
additional researchers serving to take notes and ask additional
questions. All interviews, with the exception of Subject B, were
recorded and extensive notes were taken to supplement the
recordings. Interviews were approximately 1 hour in length.

The interviews were conducted in a semi-structured manner. After
preliminary background information was shared, interviewees
were asked to recall specific instances when their project incurred
technical debt. They were then asked a series of questions about
the nature of the technical debt and the context surrounding the
technical debt, such as which stakeholders were involved in
making the decision to incur the debt, what benefits were obtained
by incurring the technical debt, who received those benefits, how
(or if) the decision to incur the debt was recorded, and if any
drivers for the decision-making process were quantified. For the
cases where the debt had been repaid, the interviewees were asked
about the decision to repay the debt, while those that had not
repaid the debt were asked about the prospect of repaying the
debt, the concrete costs of continuing to hold the debt, and who
“paid” for it.

2.2 Interview Summaries
Subject A was faced with a choice between designing a product to
deliver a required capability by supporting an older, existing API
that would soon be obsolete, or by supporting a newer API that
was likely to be the choice for future releases of the product.
Either API would be suitable for Subject A’s current needs, but
only the newer API would also suit his future needs. The subject
described feeling constrained to support the older API by two
factors. First, supporting the new API required cooperation from a
partner team on which they were dependent. The release manager
from the partner team decided that investing in the new API at
that time was lower priority than other of the partner team’s goals,
such as meeting the advertised ship date. Second, a number of
other existing products with which this product needed to
integrate were still using the old API.

In this case, the choice by the partner team not to collaborate on
supporting new API induced technical debt for Subject A’s team.
Although the issues were debated, and Subject A noted that an
important cost of this decision could be customer dissatisfaction,
Subject A felt that there were barriers to effectively estimating
and communicating the nature and magnitude of the technical
debt in terms that made sense to the non-technical stakeholders,
who might have acted to induce a different decision (e.g., by
changing the partner team’s ship date).

Subject B was brought on to work on a new release of an existing
product that IBM recently acquired. Prior to the acquisition, this
product’s customer-specific requirements had caused some other
requirements to be prioritized fairly low. After the acquisition by
IBM, however, many of these lower-priority requirements became
considerably more important, as the product was positioned in a
larger software portfolio. For example, IBM’s global presence and
wide distribution of software caused requirements regarding
accessibility, globalization, and performance to gain prominence.
At the same time, the team also had commitments for new
features. In this case, the acquisition induced technical debt in the
product because of the increased priority of architecturally
significant requirements for which the product had not been
designed.

Subject C provided several additional examples of the need to
understand the hidden costs of technical debt. After his company
was acquired by IBM, he had responsibility for helping to
integrate his product into IBM’s portfolio. In particular, his
product was complementary to an existing IBM product, and
management decided that his product should support a connection
to the existing product. Subject C agreed with his IBM product
colleagues that a particular, but as-yet unimplemented, integration
approach would be most appropriate and most architecturally
consistent with the portfolio. However, the team supporting the
existing product had firm commitments to deliver features to their
customer base and did not have the resources to accommodate
both the development of those features as well as the new APIs
needed to support the new integration approach. The decision was
made to forgo the development of the new approach and to use an
existing integration mechanism that was suboptimal but “good
enough.”

Subject C needed to ensure that his product’s architecture would
support the post-acquisition requirements, while the existing
product team needed to deliver features which they had promised.
The choice to integrate using the old API did serve the needs of
the existing product’s management, but it induced technical debt
for both the technical team and the acquired product since both
teams will eventually have to abandon the stop-gap integration
and reimplement their code to the new API.
Our final interview was with Subject D, who discussed a variety
of projects across industry sectors both inside and outside of IBM.
In one example, he described a widely used non-IBM desktop
product that accrued a significant amount of technical debt while
simultaneously becoming very successful over a series of releases.
Product managers realized that the existing code base was
increasingly impairing their ability to continue to deliver new
features. A team was put together to rewrite the product from
scratch to try to pay down technical debt. Unfortunately, the team
was unable to anticipate some of the ways their customers had
been using the software, or how many customers had come to rely
on the peculiarities of the product’s original architecture and
features. Without a clear understanding of these hidden customer
requirements it was impossible for the team to remediate all of the

product’s debt. This is a case where the cost of paying down the
debt wasn’t limited to the cost of the technical activities within the
team. It also involved a financial risk of losing customers who
might abandon the product after it ceased to function in the way
they required. In essence, the success of the product induced an
unacceptably high cost for the team trying to pay off the technical
debt by replacing the product.

In the end, the company decided not to rewrite the product. This
illustrates a “challenge of the collective” in managing technical
debt: making this type of debt visible and assessing it is a difficult
task because it involves a deep understanding of both the technical
artifacts and the ecosystems that develop around those artifacts.

Another example from Subject D is that of a successful web-based
startup company. This company routinely accrues technical debt
because developers operate in relative isolation, without a
unifying architecture and set of practices. As a result, their
product contains many code clones, which represent a form of
technical debt that increase costs because of the need to maintain
these redundancies. However, the company makes sufficient
profit with a relatively small code base that they are not perturbed
by the debt. The small code base also means that they can
periodically rewrite the entire system to pay off their technical
debt.

In this case, the company apparently made the assessment that the
cost of acquiring and then paying off this debt repeatedly is
relatively minor compared to the profit the firm is generating.
Whether this assessment is right or wrong from a business
perspective, it points to the fact that technical debt is only one
factor among many in managing a successful business. Decisions
concerning that debt need to be viewed in the larger enterprise
context and weighed against the costs and benefits of remediating
that debt.

2.3 Common Findings across Subjects
Induced and unintentional debt are challenges. Although all
four subjects discussed the reality of technical debt that is
intentionally incurred [4] by product architects, they also
highlighted two additional sources of debt as potentially more
debilitating. One is debt that is induced by other stakeholders in
the project or across the portfolio. This includes the imposed
requirement to meet a specific release date, even if quality or
other architectural properties suffer, as well as cascaded impact
from decisions made on other projects on which a given project
depends. This cascading effect may happen along interfaces
between development groups or even temporally across the
ecosystems that come to depend on the decisions from one release
to another. The second category involves unintentional debt that
the architects and other stakeholders did not actively incur, but
which was caused by situations such as acquisition, new
alignment requirements, or changes in the market ecosystem. In
general, this category results from the imposition of new,
unanticipated, and architecturally significant requirements. In the
view of the technical architects we interviewed, the non-
intentional debt typically was much more problematic than the
intentional debt.

Decisions are managed in an ad hoc manner. In all four
interviews, we learned that the explicit management and tracking
of debt-inducing decisions was often informal and ad hoc. When
faced with a choice between two technical options, the decision
was often made without any degree of formalization or attempt to
quantify the impact of the decisions. While some thought was
given toward the potential cost of paying back the debt within
technical teams, such explorations at the enterprise level appear to

be exceptional rather than routine. Most details regarding
decisions were only available through "tribal memory," which is
an unreliable source of historical information due to forgetfulness
and the attrition of team members.

Stakeholders with different types of concerns lack effective
ways to communicate and reason about technical debt. In the
enterprise context, decisions that incurred technical debt were
often made by stakeholders who did not fully comprehend the
ramifications of that debt, especially when the debt was induced
for other stakeholders. In particular, there was a prominent
communication gap between stakeholders whose primary
concerns were financial or customer related and the technical
stakeholders. The technical architects indicated that there was
neither a channel nor a common vocabulary to express the costs of
incurring a technical debt to non-technical stakeholders.

Managing the communication and negotiation for decisions
involving these multiple types of stakeholders may be difficult
without a careful (if not necessarily quantitative) assessment of a
product’s technical debt. Such an assessment is complicated by
the fact that technical debt depends heavily on many dynamic and
challenging factors that may change over time, including
customer requirements, dependencies between products and
teams, ecosystem changes, and mergers and acquisitions.

3. CONCLUSIONS AND FUTURE WORK
This paper presents results and insights from a set of preliminary
interviews with product architects in a software delivery
enterprise. The interview structure was developed to understand
the process of reasoning about, incurring and managing technical
debt. Our concerns included whether or not debt is viewed as
leverage for other actions; if decisions to take on debt are explicit
or implicit; where such decisions originate in enterprises; how
visible the ramifications of the debt are; and how decisions are
made to pay down debt.
Even though our study was small, we believe that it has shed light
on some important aspects of technical debt for both enterprises
and software engineering researchers. On the broad level for
enterprises we make the following three observations regarding
technical debt:

Collectives matter, for both products and people: Every
successful enterprise, including those that deliver software, makes
decisions that optimize benefits across their portfolio of
investments. These decisions may cascade to have negative
impact on individual projects. In other words, for the sake of
optimizing globally, some projects may suffer locally. However,
enterprises often lack the global view and communication
channels necessary to properly optimize the complexities of
technical debt. Therefore, this results in many locally optimized
decisions that may not correspond to the global optimum for the
enterprise.

Another collective effect is that portfolios of products in the same
domain can suffer from architectural issues regarding where
capabilities belong. This challenge frequently arises when the
customer sets for products in a portfolio are partially disjoint,
leading to redundancy of capabilities. This can be further
aggravated by acquisitions.

Additionally, every product and portfolio has many stakeholders,
and these stakeholders often have competing goals and “win”
conditions [1]. Decisions are often made that best optimize across
this diversity of “win” conditions, but these appear to be
suboptimal from a purely technical perspective. Moreover, since
these stakeholders have the ability to affect a variety of decisions

made about a project, they may have the ability to influence not
only whether or not a project acquires technical debt, but also the
ability of the project to pay back the technical debt.

The ability to assess debt matters: Decisions regarding technical
debt were rarely, if ever, quantified, but quantification is a critical
step before such decisions can be properly monetized in the
enterprise context. However, quantification will be very difficult
to do, as technical debt is not absolute—it is relative to a set of
goals, requirements, stakeholders, and sometimes, the ecosystem
in which the product lives. If any of these things change, the debt
may change as well. For example, a decision to defer support for a
particular standard in an API may incur a technical debt, but if the
standard is superseded subsequently, this debt disappears. Yet in
our set of interviews, skilled technical architects were able to
reason cogently about issues they did not quantify. However,
because there was no quantitative analysis, there was no data to
record and pass to other team members for future decision
analysis and review. Tracking architectural and other decisions is
a necessary step to being able to assess technical debt and to trace
from business decisions to their architectural implications to
understand impact of change.

Bridges across enterprise gaps matter: Diverse software-
delivery enterprises often have significant “gaps” between
business, operational, and technical stakeholders [5]. As a result
of these “gaps,” potential problems may go undetected until they
wreak havoc. Our interviews found that these gaps were also
relevant to technical debt. The individuals choosing to incur
technical debt were often different from those responsible for
servicing the debt. Organizational processes developed to carry
information across enterprise gaps weren’t designed with
technical debt as a concern. The end result of this is that technical
architects felt they didn’t have a feasible method to communicate
and provide feedback to the non-technical stakeholders who were
causing the debt to be incurred. Furthermore, the lack of common
methods to quantify and/or monetize debt makes it difficult to
ensure that all parties fully understand the ramifications of the
decision to acquire debt. To ensure that organizations are able to
thrive and properly manage their technical debt, there needs to be
not only a common approach to communicate about the technical
debt, but also mechanisms in the process to provide feedback on
decisions to incur or pay off technical debt.

In addition to the observations relevant to software engineering
enterprises, our study has yielded valuable information for
software engineering researchers. We highlight four issues for
further study.

First, because enterprise technical debt occurs in the context of a
larger portfolio, there is an opportunity to apply concepts from
investment leverage and / or options theory to the analysis of
technical debt. Second, because of the diverse stakeholders who
need to be involved in technical debt management and the lack of
decision support for this activity, there is an opportunity to apply
concepts from decision science to the process of managing
technical debt. Third, as noted above, technical debt is often
invisible or impressionistic, especially to non-technical

stakeholders. Finding ways to quantify debt in ways meaningful to
specific stakeholders is essential. We believe that relative or
bucketed measurements (e.g. “debt points” or debt ratings) are
more likely to be feasible in the complex enterprise environment
than are absolute measures of technical debt. Finally, we
described the importance of the occurrence of unintentional debt.
This usually arises due to dynamic forces beyond the control of
the technical team, and often beyond the scope of the enterprise.
We plan to further characterize this form of debt and explore
mechanisms to help organizations detect and deal with it.

We see three phases of future work to move forward on these
preliminary observations. First, we need to conduct more
interviews across a broader set of enterprise stakeholders to
validate and expand upon these findings. The stakeholders should
be carefully chosen to ensure we both sample across an array of
projects and portfolios, but also sample different stakeholders
involved with the same product. Next, we need to develop
techniques to assess technical debt in principled ways, including
approaches to converting or mapping it into perspectives that
make sense to the variety of stakeholders who can be involved in
incurring or paying down debt. Finally, we want to pilot these
techniques in projects and portfolios and explore the changes that
occur in the organization as a result of increased visibility and
communication.

4. ACKNOWLEDGMENTS
We thank the interviewees for their willingness to participate in
this research. Thanks also to Peter Santhanam and Mark Wegman
for their helpful comments and suggestions.

5. REFERENCES
[1] Barry W. Boehm and Rony Ross. Theory-W Software

Project Management Principles and Examples. IEEE
Transactions on Software Engineering (July 1989).

[2] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman,
Miryung Kim, Philippe Kruchten, Erin Lim, Alan
MacCormack, Robert Nord, Ipek Ozkaya, Raghvinder
Sangwan, Carolyn Seaman, Kevin Sullivan, and Nico
Zazworka. 2010. Managing technical debt in software-reliant
systems. In Proceedings of the FSE/SDP workshop on
Future of software engineering research (FoSER '10).

[3] Ward Cunningham. 1992. The WyCash portfolio
management system. In Addendum to the proceedings on
Object-oriented programming systems, languages, and
applications (Addendum) (OOPSLA '92).

[4] Steve McConnell. 2007. Technical Debt.
http://forums.construx.com/blogs/stevemcc/archive/2007/11/
01/technical-debt-2.aspx

[5] Clay Williams, Patrick Wagstrom, Kate Ehrlich, Dick
Gabriel, Tim Klinger, Jacquelyn Martino, and Peri Tarr.
2010. Supporting enterprise stakeholders in software
projects. In Proceedings of the 2010 ICSE Workshop on
Cooperative and Human Aspects of Software Engineering
(CHASE ’10).

